For well over a decade my associates and I have been developing an objective, non-invasive technique to evaluate the performance of low-back muscles, with emphasis on being able to distinguish between healthy and dysfunctioning backs. Our approach is based on the well-known fact that the EMG signal undergoes a compression in the frequency domain during a sustained muscle contraction. In particular we track the median frequency of EMG signals detected from six muscles in the lower back during an isometric extension of the trunk. The measurements are taken with the Back Analysis System which consists of a posterior restraining device, special electrodes for detecting the EMG signals, a muscle fatigue monitor which calculates the median frequency, and the appropriate software. We have found that the pattern of fatigue exhibited by the six median frequency curves can be used to distinguish individuals who have low-back pain from those who do not with an accuracy of at least 96%. An even more relevant and timely application of our technique is for quantifying the progression of the performance of low-back muscles during a rehabilitation program. Although more work is required to explore the intricacies of the technique, present results provide a convincing indication that this reliable and that it is ready to be placed into practice.

Key words: low-back pain • EMG signal • fatigue • muscle performance • spectral parameters

USING THE SURFACE EMG SIGNAL FOR PERFORMANCE EVALUATION OF BACK MUSCLES

CARLO J. De LUCA, Ph.D.

During the past 15 years, my colleagues (George H. Roy, Roberto Merletti, L. Donald Cimmino, Marco Knall, Zvi Ladin, Mark Emley, Kesenia Kozak, and Viktor Tiefertman), my students (Foster Sulien and David Casavant), and I have been evolving objective means for evaluating the performance state of low-back muscles in normal conditions and subsequent to injury, low-back pain, or physical exertion. We have applied the EMG spectral variable technique to assess the state of a group of muscles in the lower back during a regulated isometric constant-force contraction. To date our work has not addressed the issue of causality or etiological specificity. We realize that these factors are of fundamental interest to many clinicians. For the time being, we have focused on providing means that can assist in determining the presence of a dysfunction, monitoring the outcome of a prescribed treatment, and possibly determining when an individual is capable of safely performing work tasks. We see our test as a component of the battery of tests that would be performed on a patient to arrive at a diagnosis or a course of treatment.

This article expresses a personal point of view on the merits and applicability of the technique. The article is not designed to provide evidence for the stated position, but rather to present facts in a concentrated fashion with reference to the published work containing the supporting details. The author is keenly aware that more work is required to firmly and indisputably establish the practical application of described approach. This statement of position has a twofold purpose: to inform the reader on the present advances of this approach, and to invite the reader to explore its applicability.
OTHER CURRENT APPROACHES
All currently used techniques and devices used for evaluating the performance of the back muscles measure mechanical variables associated with force, velocity, or displacement of the trunk. All approaches share a common flaw in that the measured kinematics and force variables are cognitively perceived by the central nervous system, and that can be voluntarily regulated in a manner that can meaningfully affect the values of the variables being measured. For example, a highly motivated individual interested in knowing the upper limits of higher strength would perform to the full extent of his/her physical capability. Whereas an individual with less motivation would perform at a lesser level, thus not revealing his/her full capabilities.

OUR APPROACH
Our approach circumvents subjectivity by extracting information directly from the EMG signal. But, unlike previous approaches to using EMG signals for assessing the performance state of the back, we do not analyze the amplitude of the signal. Instead we derive a fatigue index from the frequency spectrum of the signal. We detect the EMG signal from six sites, three on each side of the back, located at L-1 of the longissimus thoracis, at L-2 on the iliocostalis lumborum, and at L-5 on the multifidus. Our approach consists of placing the back muscles in a fatiguing mode by requesting the subject to sustain a high-level constant-force isometric extension of the torso. The contraction lasts for 30 seconds. After a brief period of rest (1 minute) the subject is instructed to elicit a brief (5 seconds) contraction at the same force level to assay the recovery process of the preceding fatiguing contraction. The EMG signals are processed to obtain the value of a spectral variable, the median frequency. We construct an information map which consists of the initial value and the slope of the median frequency of the EMG signal detected during the sustained contraction and the value of the median frequency from the recovery contraction; this is done for all six locations. This information map describes the performance state of the muscles. A discriminant analysis is subsequently performed to distinguish and characterize the differences between normal and abnormal behavior in the information map. We look for differences in the values of the information map at the beginning of the contraction and how they change with respect to each other during the contraction and recovery phase. The useful information is not contained in any one muscle, but rather it is extracted from all the monitored muscles simultaneously.

Because the test requires the subject to perform a submaximal constant-force isometric contraction and because the duration of the contractions is not a measured variable subject is not cognitively aware of the EMG variables thatconstitute the information map.

THE PREMISE OF OUR APPROACH
We have hypothesized that the behavior of the median frequencies in the information map of the monitored muscles in the lower back is more similar among individuals who have no dysfunction (induced by injury, pain, or possibly congenital defect) than among those who do. The reasoning is that if a relative dysfunction exists in some muscles, then the other muscles will work to compensate the deficit. This organization provides an imprint which is particular (but not necessarily unique) to the characteristics of the dysfunction. Thus, by determining the information map we expect to infer the presence of injury, pain, and other disabling causes.

A criticism that has been leveled against our approach is that we only detect signals from surface muscles, when in fact there are muscles in deeper layers located about the spinal column which contribute to extension and rotation of the trunk. Although this is so, the long surface muscles of the back enjoy a greater moment arm about the center of rotation of the spine, thus they contribute the major share of the monitored torque during extension. Empirically our results have shown that the surface-muscle subset provides considerable information that can be used to construct statistically significant discriminations between normal and abnormal behavior.

THE BASIS OF OUR APPROACH
It has been known for nearly eight decades that during a sustained contraction, the EMG signal undergoes a frequency compression. More recently, we have also learned that the shape of the frequency spectrum may also change during sustained contractions. The net effect of these phenomena cause EMG spectral variables, such as mean, median, and mode frequencies to decrease during sustained contractions. This characteristic of the EMG spectral variables has been accepted by many investigators as an index of muscle fatigue which occurs during sustained contractions.
However, because the duration of the EMG spectral variables also occurs during constant-force contractions, their use as fatigue indices has raised a controversy between a recent generation of investigators who apply EMG spectral measures of tonic fatigue to objectively evaluate human physical performance and the health scientists who follow the classical (and in my view less use- ful) definition of muscle fatigue. Traditionally, muscle fatigue has been defined as the failure of a muscle to maintain a prespecified force level. By this definition, during a constant-force contraction, a muscle does not fatigue until the force output diminishes. This approach was useful and convenient, but in my view limited within no other facile means of ascribing muscle fatigue were available. Recently, Bigland-Ritchie and Woods have advanced the concept of monitoring the rate of decline of force output during a sus- tained maximal voluntary contraction. Although this approach improves on the use of force as the variable of measure, it remains susceptible to the capability and/or willingness of the individual to continue to exhibit maximal effort during a test.

It is useful to recall this while, in a macroscopic sense, the net contractile force of the muscle may remain acceptably constant, there are time- dependent physiological processes that microscopi- cally alter the means for generating force during sustained constant-force contractions. Some of them are: (1) motor units may be recruited and derecruited; this has not been proven beyond doubt, but remains plausible. (2) The firing rates of most motor units decrease; this phenomenon was first reported by Peruzzo and Kodini and indepen- dently by us. (3) The force/twitches of motor units poselectric. In addition to these physiological phenomena, there are practical considerations which reduce the usefulness of the contractile force measure of fatigue in evaluating human physical performance; these are: (1) contractile fatigue is susceptible to subjectivity because contractile force may decrease due to psychological factors as well as to physiological factors. The EMG spectral variables monitored during constant-force isometric contractions are not subjected to the psychological factors. (2) Contractile force can only be conve- niently measured by monitoring the static about a joint to which more than one muscle can contrib- ute. In contrast, the EMG signal can be detected from individual muscles; thus the spectral variable fatigue index can be used to describe the perfor- mance of individual muscles. (3) The spectral vari- ables decrease continuously from the onset of con- traction, thus providing an indication of the rate of the fatigue process early in the contraction. Con- tractile fatigue, as currently measured, requires the expenditure of considerable effort prior to being measurable. This is a limitation for clinical usage.

There has been a flurry of activity directed at describing the behavior of and understanding the relationships between the EMG spectral variables and physiological and biochemical processes which occur during muscle contractions. An early review of relevant work was written by De Luca in 1983,1 a more current review has been written by Mer- letti et al.11 We have shown the EMG spectral vari- ables to be causally related to the p.H of the extra- cellular fluid and possibly to the intra-eflar fluid.8 It has been suggested, but not proven, that the concentration of potassium ions and the dura- tion of the polarization zone on the membrane may also affect the EMG spectral variables. The exploitable aspect of these relationships and asso- ciations is that through the analysis of an EMG signal detected painlessly on the surface of the skin above the muscle, it is possible to obtain useful time-course estimates of processes that fatigue during a muscle contraction.

Given that both the EMG spectral variables and the force variable of the contractile mecha- nisms undergo changes during the progression of fatigue, it is inevitable to ask if a relationship exists between the two. The answer is undoubtedly yes. The more interesting question is if the relation- ship is causal. This issue is not clear at this time, and a considerable amount of work is required be- fore meaningful statements can be made to illumi- nate this issue. Nonetheless, the lack of proof of a causal relationship does not logically preclude the use of the spectral-variable fatigue index, espe- cially when empirical evidence reveals its usefulness.

THE EMBODIMENT OF OUR APPROACH—THE BACK ANALYSIS SYSTEM (BAS)

Our concept is embodied in a device and tech- nique called the BAS, which is comprised of four functional elements: (1) special surface EMG electro- deters which have specific architecture and elec- trical properties for the detection of signals suitable for spectral analysis, (2) a muscle fatigue sensor which processes the EMG signals to obtain the spectral variable, (3) a postural restraining appa- ratus which constrains the posture of the subject so that the sensed force is related, as much as pos- sible, to the force generated by the monitored
muscles in the lower back. Also, the torso is immo-
obilized to limit the required extension to an iso-
metric contraction and to provide a means for stan-
dardizing the posture of the subject during the test. This is an important feature because, with cur-
cent knowledge, the EMG spectral technique can only be used properly when the muscle length remains fixed; and (4) software for system stabil-
ization, signal-quality monitoring, test configura-
tion, data collection, signal analysis, and statistical evaluation.

PROPER USE OF A NEW TECHNIQUE

When a new technique is used in the research and clinical environments, it is incumbent on the users to apply it with proper respect for, and knowledge of, its limitations and idiosyncrasies. All new tech-
nology has unexplored fringes that require care-
ful considerations. Unchecked usage will provide inconsistent and possibly conflicting results. When using the EMG spectral technique the following considerations must be respected.

Technical Considerations. (1) The electrode should be sufficiently small and placed well within the borders of the muscle so as to detect the EMG signal from the muscle in question and not corssstalk signal from adjacent muscles. Signals from adjacent muscles will be subjected to greater spatial filtering, thus reducing the value of the spectral variables of the detected signals. We have developed a special electrode which, in most cases, can satisfy the two conditions. The detection sur-
faces of our electrode consist of two parallel bars, each 1.0 cm long and 1.0 mm wide spaced 1.0 cm apart. (2) The spacing between the detection sur-
faces inversely scales the value of the spectral vari-
ables. (3) The orientation of the detection surfaces with respect to the muscle fibers also affects the value of the spectral variables. (4) The tempera-
ture of the muscle directly affects the spectral variables. Tests made for comparison should be made at similar temperatures or scaled appropri-
ately. (5) Ambiens electromagnetic radiation, mo-
tion artifacts, clipping of the signal during detec-
tion, and poor signal-to-noise ratio all adversely affect the value of the EMG spectral variables.

Physiological Considerations. (1) The thickness of the fatty tissue between the electrode and the muscle affects the amount of spatial filtering on the signal. We anticipate that this approach will not work well on obese individuals. (2) The pH in the environment of the muscle membrane is a function of the net H+ produced and removed. Thus, the rate of blood flow in the muscle can af-

fect strongly the behavior of the EMG spectral variables. This is one reason for performing the tests at relatively high force levels where the internal pressure of the muscle is sufficient to collapse the arterioles and interrupts blood return, and also for performing the contraction in an isometric mode where the internal pressure remains reason-
ably constant and does not alter the rate of blood flow as is the case in dynamic contractions.

RELIABILITY AND REPEATABILITY OF EMG SPETTRAL MEASUREMENTS

Prior to recommending a new technique it is in-
cumbent on the proponents to prove that it is reli-
able and provides repeatable results. We have per-
formed two series of experiments. In one series we ascertained the error induced in the value of the EMG spectral variable by repeating a contrac-
tion within 15 minutes under similar conditions; the error was found to be 2% for the initial value and 6% for the slope of the median frequency.16 Performing similar evaluations on test/test reas-
strain, Biederman, Shanks, and Ingh5 found that the error in the repeatability of the median frequency slope measurement increased to ap-
proximately 10% when the electrode, identical to ours, was removed and the tests were separated by 5 days.

OUR RESULTS TO DATE

In collaboration with my associate, S. Roy, four studies have been completed. The first16 com-
pared the information map consisting of the initial value and the slope of the median frequency of 12 patients and 12 age-and-height–mached control subjects who had never experienced low-back pain. The patients had a convincingly docu-
mented history of chronic low-back pain which persisted repeatedly over a period of at least 1 year, with an average duration of 5.2 years. At the time of the tests the patients were not experienc-
ing pain. None of the patients had previous back surgery or current radiographical evidence of structural disorders of the spine. The test was able to identify the control subjects with an accuracy of 84% (10 of 12) and the low-back pain patients with an accuracy of 91% (11 of 12) purely on the basis of the EMG spectral variable test. It is partic-
ularly interesting to note that the two groups had a maximal voluntary contraction that was statisti-
cally indistinguishable at the 95% confidence level.

The second study17 was performed on rowers
both the control subjects and the fibromyalgia patients. The latter two groups were statistically indistinguishable at the $P = 0.05$ level.

The above studies were directed at proving the EMG spectral technique, if properly used, could distinguish between individuals with and without low-back pain. The results are favorable and apparently superior to those of other clinical techniques. Thus, from a scientific point of view, our results provide evidence that the approach in the study may be useful. However, if one were to place this approach into practice either in a clinical or ergonomics setting, a much larger number of control subjects would be required to establish the range of normality. It may even be necessary to categorize separate sets of normal low-back muscle performance for individuals with distinctly different body shapes and those with different life styles. We have begun to accumulate such a database.

There is one application of the approach which does not require a sound data base of normal for statistical comparison, i.e., the monitoring of a treatment outcome. In this utilization, the individual becomes his/her own control. With the collaboration of several clinical colleagues, we are currently documenting the progression of modifications in the information map toward normality in over 100 patients with different pathologies undergoing various forms of rehabilitation programs.

The issue of causality remains a complex one. Our work has only established an association between the performance of low-back muscles and the presence of pain. The question of which causes which remains open for consideration. For example, in soft tissue injuries, does the presence of pain cause the muscles to work differently?, or, does muscle insufficiency, present for extended periods of time, eventually cause a physical disturbance that induces pain? Is it possible to distinguish the effect on the information map caused by different pathologies? These are difficult questions to address and are certainly necessary to be studied if the approach is to be used for diagnostic purposes.

RELATED WORK OF OTHERS

Other than our work there are four other relevant reports in the literature which describe the use of the EMG spectral technique to evaluate the performance of back muscles. Kodistick et al., used a technique similar to ours; the spectral varico
was the mean frequency. They detected EMG sig- nals from the right and left rectus abdominis muscles of normal healthy subjects. Their results paralleled ours in indicating the viability of the tech- nique and the importance of the specificity of the details of the procedure. Subsequent work by this group employed the EMG spectral technique to test and compare reconditioned low-back pain pa- tients. The procedure differed from their earlier work in that a Roman chair device was used to activate the back extensor muscles and the EMG signals were detected from two locations, i.e., on the L3 level of the left and right longissimus muscles. They asked the subjects to perform 10 trials of brief (15 seconds) exten- sions of the back separated by 10 seconds of rest. They calculated the initial value of the mean fre- quency for each contraction. Their results were con- formed with ours, indicating a greater rate of change of the spectral variables across the different trials in low-back pain patients. These results notwithstanding the authors continued to express a concern, voiced in a previous publication, that the spectral technique was not a sufficiently good index of muscle fatigue. They drew attention to two observations: (1) the high variability of their normative data, which was interpreted to indicate lack of sensitivity and/or a reflection of different fatigue processes among subjects; and (2) the mean frequency decreased nonlinearly with con- secutive trials. They viewed this behavior as prob- lematic for a fatigue index because it would not be independent of the point of end of the contraction. Their reasoning has two possible flaws. First, it ap- pears that they were attempting to interpret the behavior of the EMG spectral variables as contras- tile variables, the distinction between these two categories of variables has been made earlier in the text. Second, the asymmetry they see in their results can easily be explained by the procedures they used to isolate and elicit contractions from the back muscles, as well as the procedure used to detect and process the EMG signals. Seven years ago we experienced similar difficulties. We found that it was absolutely critical to restrict the pos- itioning of the back in a fixed and consistent pos- ition, carefully monitor the isometric contraction so that it is as consistent as possible among tests, use more than two detection sites, and adhere to the technical and physiological considerations de- scribed earlier. The high variability of their results can also be explained by the repeated calculation of the initial median frequency whose estimate is inherently a random variable due to the stochastic nature of the EMG signal. (We have found it more useful to monitor the spectral variable most- uly as a function of contraction time.) The re- peated trials with numerous test periods also con- tributed to the variability of the data because the blood flow in the muscle is not restricted, as de- scribed previously. In summary it is clear to us that the difficulties experienced by the above in-vestigators may well be a function of the method- olgy, rather than a limiting flaw in our approach. In contrast, a report from Biederman et al. described an approach more similar to ours than that of the previous group. They tested 22 healthy subjects and 24 patients with chronic low-back pain. The patients were further separated into two groups: controls who consistently re- ported lower pain sensation, and avoiders who consistently reported higher pain sensation. They detected EMG signals from four sites on the back simultaneously and calculated the median fre- quency spectral variable. The electrodes were placed on the right and left multifidus and ilios- ternalis lumbarum. They performed the test care- fully, used our electrodes, placed them in anatom- ically correct locations, and respected technical considerations described previously. Their results were qualitatively and quantitatively consistent with ours. The test identified 80% of 80% of the avoiders and only 8% (3 of 37) of the normals, and confronters were misclassified as belonging to the avoider group. CONCLUSION It is my opinion that the majority of available evid- ence favors the notion that the EMG spectral technique, when used correctly according to defini- ble criteria, does provide means for objectively evaluating the performance of back muscles.

tions potential train recorded during constant force iso-
8. Joel C. Pacing and sodium shift during in vivo isom-
etric muscle contraction, and the time course of the in-
TD, Mooney V. Myoelectric spectral analysis and strategies
for quantifying true muscle fatigue. Arch Phys Med
10. Klein A, Snyder-Mackler L, Roy SH, De Luca CJ: Compa-
rison of normal mobility and isometric trunk extensor
strength to EMS spectral analysis in identifying LBP. Phys
11. Mvelo R, Kruizli M, De Luca CJ: Electrically evoked my-
12. Merediz R, Kruizli M, De Luca CJ: Myoelectric manifesta-
tions of fatigue in voluntary and electrically elicited con-
13. Meyer TG, Koudraze G, Mooney V, Caroniach TW,
Buch W. Lumbal myoelectric spectral analysis for endur-
14. Penny DS, Kruizli LP: Discharge frequency and discharge
pattern of human motor units during voluntary contrac-
tion of muscle. Electromyograph Clin Neurophysiol 1972;32:
371–483.
15. Piper H. Kinetomyography- movebänder muschis (German
16. Roy SN, De Luca CJ, Guava: DA: Lumbal muscle fa-
17. Roy SH, De Luca CJ, Snyder-Mackler L, Emley MS, Caroni-
ach T, Luehr JF: Fatigue, recovery and low back pain in
18. Strass RW, Roy S, De Luca CJ: Auck muscle fatigue in Fi-
bromyalgia: comparison normal and patients with idi-
opathic low back pain. Proceedings of First International Sympe-
ton in Myofascial and Fibromyalgia. Minneapolis, University of Minnesota 1989; pp 57.
19. Standridge R, Koudraze G, Mooney V, Caroniach T,
Mayer T: Temporal characterization of myoelectric spec-
tral moment changes: analysis of common parameters.

216 Surface EMS Signals in Back Muscles MUSCLE & NERVE February 1993